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curacy of effect-directed analysis:
the role of bioavailability

Jing You and Huizhen Li *

Aquatic ecosystems have been suffering from contamination by multiple stressors. Traditional chemical-

based risk assessment usually fails to explain the toxicity contributions from contaminants that are not

regularly monitored or that have an unknown identity. Diagnosing the causes of noted adverse

outcomes in the environment is of great importance in ecological risk assessment and in this regard

effect-directed analysis (EDA) has been designed to fulfill this purpose. The EDA approach is now

increasingly used in aquatic risk assessment owing to its specialty in achieving effect-directed nontarget

analysis; however, a lack of environmental relevance makes conventional EDA less favorable. In

particular, ignoring the bioavailability in EDA may cause a biased and even erroneous identification of

causative toxicants in a mixture. Taking bioavailability into consideration is therefore of great importance

to improve the accuracy of EDA diagnosis. The present article reviews the current status and applications

of EDA practices that incorporate bioavailability. The use of biological samples is the most obvious way

to include bioavailability into EDA applications, but its development is limited due to the small sample

size and lack of evidence for metabolizable compounds. Bioavailability/bioaccessibility-based extraction

(bioaccessibility-directed and partitioning-based extraction) and passive-dosing techniques are

recommended to be used to integrate bioavailability into EDA diagnosis in abiotic samples. Lastly, the

future perspectives of expanding and standardizing the use of biological samples and bioavailability-

based techniques in EDA are discussed.
Environmental signicance

The risk of multiple stressors in aquatic ecosystems has attracted increasing attention and become a great challenge to be overcome in the current framework of
ecological risk assessment. Diagnosing the key toxicity contributors is an indispensable step in prioritizing the toxicants concerning environmental risk
assessment, management and policy decision. Effect-directed analysis (EDA) is an efficient tool to address this challenge, yet suffers from the lack of envi-
ronmental relevance. In particular, the ignorance of bioavailability in EDA may cause a biased identication of the key toxicants in a mixture. Based on the
current understanding and limitations, the current article reviewed the methods and applications of incorporating bioavailability into EDA approaches to
improve the accuracy of cause diagnosis.
Introduction

Along with the global population increase and economic
booms, a vast number of chemicals have been used and
released into the environment. As a consequence, complex
mixtures of chemical residues and their transformation prod-
ucts co-occur in different environmental compartments and
pose signicant threats to the ecosystem and human health. To
evaluate and mitigate ecological risk, it is necessary to nd out
the main toxicants responsible for any observed adverse
outcome. Chemical-based risk assessment is oen used to
assess the occurrence, fate, and toxicity of environmental
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Chemistry 2017
contaminants. A combination of quantitative analysis of target
analytes and tiered biological assessments (e.g., in silico, in vitro,
and in vivo bioassays and trait-based effect assessment at pop-
ulation and community levels) can provide multiple lines of
evidence for elucidating potential risks related to contaminants
with a known identity.1,2 These conventional approaches have
proven effective in regional risk assessment, particularly in
areas where key toxicants are included in the lists of target
analytes. For example, the toxicity of sediments to benthic
invertebrates in urban streams in some regions was well
explained by the occurrence of pyrethroid insecticides.3–5

In most cases, however, the link between chemical exposure
and an adverse outcome may not be so obvious. To date, more
than 100 million chemicals have been indexed in the American
Chemical Society's database and over 100 thousand of these are
currently in use (https://www.cas.org/content/counter).
However, only a very small portion (several thousands) of this
Environ. Sci.: Processes Impacts
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enormous number of chemicals have ever been analyzed and/or
regulated in the environment, and even less (tens to hundreds)
have been enrolled in the priority lists for regular monitoring.6

It is possible that the thousands of target analytes assessed
could only explain a small fraction of the observed adverse
outcomes.6–8 Recently, a nationwide survey of organic contam-
inants in stream water was carried out by the U. S. Geological
Survey.7 A total of 719 bioactive anthropogenic contaminants
were analyzed in surface water samples collected from 38
streams across the U.S. Within the target compounds, 406 were
detectable in at least one of the samples. Complementarily, in
vitro bioassays were conducted as effect-based assessments, and
estrogen (ER), androgen (AR), and glucocorticoid receptor (GR)
activities in part of the water samples were signicantly
different from the controls. Although the ER activity was well
correlated to the measured concentrations of estrogen in water,
the detected AR and GR activities could not be explained by the
detected target chemicals in the extended list of 719 analytes.8

Similar inconsistency between the chemical and biological
analyses of the same samples has also been reported in other
regions. In a European-wide water monitoring program, Brack
et al.9 showed that the target analytes (151 organic pollutants)
were not capable of explaining the major portions of the
observed biological effects, particularly the AR and GR activity
and sh embryo toxicity. Therefore, it is imperative to develop
alternative nontarget approaches for diagnosing the causes of
noted toxicity in the cases where target chemical-based risk
assessment cannot match the results of effect-based
assessments.
Cause diagnosis: toxicity identification
evaluation and effect-directed analysis

Two approaches, namely toxicity identication evaluation (TIE)
and effect-directed analysis (EDA), have been developed to fulll
the purpose of identifying key toxicants in environmental
samples under the guidance of biological analysis.10–12 In
general, TIE procedures comprise three phases:
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characterization, identication, and conrmation.13 In phase I
characterization, the toxicants are classied into different
groups, such as nonionic organic contaminants, cationic
metals, ammonia, and suldes, by comparing toxicity with and
without sample manipulation. In phase II identication,
possible toxicants belonging to the toxic classes characterized
in phase I are analyzed for their identities, environmental
concentrations, and toxicity contributions. In phase III conr-
mation, the toxicity contribution of the identied toxicants in
phase II is conrmed using independent lines of evidence. On
the other hand, EDA combines bioassays, fractionation, and
chemical analysis to unravel the key organic toxicants in
complex mixtures.14 For solid samples, an extraction step is
mandated to transfer the mixture of contaminants into a solu-
tion for bioassays and fractionation. Under the guidance of
biological effects, EDA reduces the sample complexity for
merely identifying the suspect toxicants in the fractions with
high biological activity aer cycles of fractionation and bioas-
says. Conrmation of the candidate toxicants is also required to
warrant EDA identication.

Both approaches have been successfully used for aquatic
samples, including water, sediments, and biota.6,14–17 TIE and
EDA share the same goal of tracing the causative agents for the
observed toxicity by screening, identifying, and conrming the
suspect toxicants in certain chemical classes and fractions
exhibiting high biological activity. Nevertheless, TIE and EDA
differ a lot in themethodologies used to reduce the complexity of
the original samples and to narrow down the lists of pollutants
to be analyzed.15 For sediment samples, TIE characterizes the
possible toxicants into different classes, e.g., nonpolar organics,
cation metals, and ammonia, using respective manipulations to
alter the bioavailability of certain classes of chemicals, such as
handling the sediments with coconut charcoal, cation resin, and
zeolite.13,18 Instead, EDA focuses on identifying the main organic
toxicants causing toxicity in sediment extracts by performing
fractionation and a bioassay iteratively.6,14

The two approaches have their own merits and weaknesses
in diagnosing causative chemicals in complex environmental
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mixtures. TIE considers toxicity contributions from organics,
ammonia, and metals and has the advantage of environmental
relevance by using whole organism toxicity testing with
a consideration of the bioavailability of the contaminants.
However, TIE suffers from the limitation that it only considers
target analysis in phase II when identifying the principal toxi-
cants in complex mixtures. Alternatively, EDA is a promising
tool to use in diagnosing organic toxicants with the aid of
sophisticated fractionation procedures and advanced analytical
methods for target, suspect, and nontarget analyses. However,
conventional EDA is short of environmental relevance because
in vitro bioassays with exhaustive solvent extracts are commonly
used in EDA rather than in vivo bioassays with original envi-
ronmental samples as in TIE, mainly as a sacrice to achieve
high-throughput and high-sensitivity biological analysis.
Therefore, it would be protable to establish an integrated
method by complementing the environmentally relevant TIE
and the toxicant specic EDA.15,19

Taking bioavailability into consideration is vital to improve
the environmental relevance of cause-diagnosing approaches. A
comparison of whole sediment and porewater TIE techniques
showed that the testing matrix signicantly impacted the
characterization of the causes of toxicity. While ammonia was
identied as the major toxicant by porewater TIE, whole-
sediment TIE concluded that polycyclic aromatic hydrocar-
bons (PAHs) were the primary reason for the toxicity to benthic
invertebrates in sediment samples from the Illinois River in the
U.S.20 This suggests that it is preferable to conduct phase I TIE
characterization under environmentally realistic exposure
conditions, which can well address the bioavailability issue.
Meanwhile, the use of bioavailability/bioaccessibility-based
extraction (e.g., Tenax extraction for nonpolar organics and
the Bureau Commune de Reference speciation for metals) in
phase II TIE could improve the accuracy in identifying major
toxicants by eliminating the contaminants with low bioavail-
ability from the list of putative toxicants.21 On the contrary,
conventional EDA methods generally ignore the bioavailability
of the contaminants, which may bias the toxicant diagnosis by
overestimating the toxicity of the highly toxic but less bioavail-
able contaminants and by underestimating the toxicity contri-
bution from the polar toxicants.14,15

Themajority of synthetic chemicals ever produced have been
organic chemicals.22 Upon reviewing the whole-sediment TIE
practices in the last 20 years, Ho and Burgess13 concluded that
90% of the TIE tests revealed organic pollutants, either singly
(70%) or in combination with metals (10%) or ammonia (10%),
were responsible for the observed sediment toxicity. This
conclusion was also supported by Malaj et al.,23 who found that
organic contaminants were the major toxicants jeopardizing
biodiversity and the ecological functions of freshwater ecosys-
tems in Europe. Therefore, accurately elucidating the toxicity
contribution from organic pollutants that have an ever-
expanding chemical space is of great importance in diag-
nosing the causes of noted toxicity in the environment. This
promotes the use of the EDA approach, which is superior to TIE
in recognizing toxicity contributions from suspected organic
toxicants with an unknown identity.6 To take bioavailability into
This journal is © The Royal Society of Chemistry 2017
consideration is of importance for improving the accuracy of
EDA diagnosis.

The objective of this review article is to summarize the
current status and applications of EDA, with a special focus on
discussing the role of bioavailability in cause diagnosis for
biological and abiotic samples in aquatic environments. To
incorporate bioavailability into EDA practices for abiotic
samples, bioavailability-based techniques are integrated in the
sampling (extraction) and/or dosing steps. Here, the future
perspectives of applying and standardizing the bioavailability/
bioaccessibility-based techniques in EDA are also discussed.
The concept and measurements of
bioavailability

Bioavailability is a measure of the quantity of a chemical that
can be utilized by an organism.24,25 Bioavailability is controlled
by an array of variables related to the exposure medium,
chemical properties, organism traits, and environmental
parameters, thus it is highly variable.26,27 The inuence of
bioavailability on the bioaccumulation and toxicity of organic
contaminants has been well documented and bioavailability-
based measures have been recommended as more accurate
dose metrics for predicting toxicity than the total chemical
concentrations in an environmental matrix, particularly in
sediment and soil.4,26,28–32 Extensive studies have been con-
ducted to better understand the impact of various factors on
bioavailability, to develop more accurate methods for esti-
mating bioavailability and to incorporate bioavailability into
ecological risk assessment.26,33

Despite acknowledgment of the importance of including
bioavailability in toxicity assessments, the practice is lagging
behind due to the lack of a universally accepted denition of
bioavailability.27 The amount of chemicals accumulated in
organisms well represents the bioavailability, but it is species-
dependent, difficult to quantify, and unsuitable for easily
metabolizable chemicals.34 Alternatively, chemical techniques
have been developed to predict bioavailability and are generally
classied into two categories corresponding to two dened
concepts of bioavailability: chemical activity and accessibility.35

Chemical activity describes the potential for partitioning uptake
into organisms and is closely related to the concentrations of
the freely dissolved chemicals in the environmental media. It is
similar to bioavailability termed by Semple et al.,36 which they
dened as the fraction of a chemical readily available for uptake
by an organism. Instead, accessibility is an operational
parameter representing the mass quantity of contaminants and
it corresponds to bioaccessibility as dened by Semple et al.36 as
the fraction of a chemical potentially available to an organism.

According to the two concepts of bioavailability, a suite of
chemical techniques have been developed to predict the
bioavailability of organic contaminants. Many reviews have
summarized the current chemical techniques for estimating the
bioavailability of organics and suggest that these techniques
can adequately estimate chemical body residues in biota and
their toxic effects.26,27,29,32,37 Chemical activity is
Environ. Sci.: Processes Impacts
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Fig. 1 A scheme to incorporate bioavailability-based extraction and
dosing methods in effect-directed analysis.
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a mechanistically dened concept based on equilibrium parti-
tioning theory.35 Various passive-sampling techniques have
been applied to measure the chemical activity of nonpolar
organics, e.g., semi-permeable membrane devices,38 solid phase
microextraction,39 polyoxymethylene,40 polyethylene devices,41

and polymethyl methacrylate.42 Meanwhile, passive samplers
have also been designed for concentrating polar organic
contaminants in water, such as the polar organic chemical
integrative sampler (POCIS),43 Chemcatcher,44 and organic-
diffusive gradients in a thin lm aquatic passive sampler (o-
DGT).45 The operationally dened accessibility of organic
contaminants is commonly estimated using non-exhaustive
bioaccessibility-directed extractions, including mild solvent
extraction,46 cyclodextrin extraction,47 supercritical uid
extraction,48 and sorbent-assisted desorption (e.g., Tenax and
XAD extraction).49,50 Though the two bioavailability-based
extraction techniques (partitioning-based passive sampling
and bioaccessibility-directed extraction) measure different
components of the matrix, their estimates have both been
shown as good indicators of body residues of organic contam-
inants in biota.27,29,35 Compared with mimicking the bio-
accumulation of chemicals in organisms, the use of
bioavailability-based extraction techniques in predicting
adverse effects is less investigated.51,52 The limited studies have
implied that incorporating bioavailability-based dose metrics
into toxicity evaluations may signicantly improve the accuracy
of ecological risk assessment.4,28–30,53
Incorporating bioavailability into EDA
analysis

Bioavailability inuences the apparent toxicity of a chemical
tremendously, thus it is imperative to consider bioavailability in
the cause diagnosis of environmental mixtures.54,55 Neverthe-
less, conventional EDA seldom takes bioavailability into
consideration when using exhaustive extraction, which
accordingly biases the toxicity composition of individual
compounds in the mixture.56 However, an ignorance of
bioavailability may lead to an overestimation of the toxicity of
some hydrophobic contaminants that have high toxicity but
poor bioavailability. Consequently, the toxicity contribution
from more bioavailable polar contaminants in the same
mixture may be masked and overlooked, resulting in a failure of
EDA applications.6,15,54 To obtain more realistic exposure
scenarios, bioavailability is recommended to be integrated into
EDA procedures. Such an incorporation of bioavailability would
aid EDA to reduce bias in assessing the toxicity of contaminants
with limited exposure potential and would subsequently
increase the accuracy in cause diagnosis.

The most straightforward way to consider the bioavailability
issue is to perform EDA using biological samples, yet this type of
EDA practice is understudied nowadays due to some conceptual
and technical challenges.16,17,54,55 In the meantime, increasing
numbers of studies have tried to develop EDA approaches for
abiotic samples in combination with previously established
bioavailability-based techniques. As shown in Fig. 1,
Environ. Sci.: Processes Impacts
bioavailability can be dealt with throughout the EDA process.
Bioavailability-based extraction techniques (partitioning-based
passive sampling and bioaccessibility-directed extraction) have
been used for collecting contaminant mixtures from
environmental samples before fractionation and toxicity
testing, while bioavailability-based dosing techniques have
been used as a replacement for traditional solvent-dosing
methods for conducting toxicity testing of fractionalized
extracts. As a result, more ecologically relevant EDA methods
that consider the bioavailability of the contaminants have been
established.6,15,54,55 In the following sections, the current status
and challenges for integrating bioavailability into EDA practices
are reviewed for biological and abiotic samples sequentially.
The EDA of biological samples

While rarely performed, the EDA of biological samples already
directly take bioavailability into consideration by using biolog-
ical samples, such as tissue homogenates of organisms and
body uids (e.g., blood plasma, bile, and urine). As listed in
Table 1, a variety of tissue and body uid samples have been
used in EDA. Similar to a general EDA procedure, a whole-
process EDA of biological samples consists of sample extrac-
tion, cycled extract fractionation and bioassays, chemical
analysis, and toxicant identication and conrmation. Simon
et al.17 reviewed the applications and recent innovations in the
EDA of biological samples and claimed that the use of biological
samples is advantageous due to the direct consideration of
bioavailability by covering the complete exposure routes of
contaminants from the environment to the biota.

The difficulty in preparing extracts for EDA analysis is one of
the main aspects hindering the application of biological
samples.17,54,55 In general, extracting biological samples poses
challenges related to the small sample size and high matrix
interference, e.g., lipids and natural hormones. Therefore,
developing cleanup methods to effectively remove the lipids
and hormones from biological extracts without sacricing
This journal is © The Royal Society of Chemistry 2017
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potential toxicants is critical to expanding their applications in
EDA. An accelerated membrane-assisted cleanup (AMAC)
method has been proposed for cleaning lipid-rich biological
samples prior to chemical and/or biological analyses. Streck
et al.57 showed that this AMAC method is effective in removing
>90% of lipid-like matrix components and could satisfactorily
recover most compounds (>70%). Simon et al.58 used a combi-
nation of dialysis, gel permeation chromatography (GPC), and
normal phase-high performance liquid chromatography (NP-
HPLC) to eliminate the co-extracted lipids and hormones
from sh tissues. This method enabled the use of in vitro
bioassays in EDA to unravel the anthropogenic toxicants for the
noted endocrine-disrupting (ED) effects of thyroid hormone
(TH)-like and (anti)androgenic activities. In addition, a cleanup
method coupling solid phase extraction (SPE) with liquid–
liquid extraction (LLE) was developed and used in the EDA of
blood plasma with the in vitro TH disrupting effect as the
endpoint. With the help of the validated SPE-LLE method, an
EDA of polar bear plasma samples found that the OH-PCBs in
plasma explained 60–85% of the detected TTR-binding
potency.59 Passive samplers were innovatively introduced for
extracting biological samples for EDA and this method could
signicantly reduce the interfering matrix components. Jin
et al.60–62 employed polydimethylsiloxane (PDMS) polymer as
a partitioning-based passive sampler to collect neutral organic
chemicals accumulated in the blood of green turtles and the
blubber of marine mammal dugong. The results showed that
most of the dioxin-like activity (>70%) in bioassays could be
explained by EDA-deducted toxicants, but the cause of the
oxidative stress response is not clear yet.

To perform high-throughput toxicity testing with small
sample masses, in vitro bioassays are regarded as compatible
methods to evaluate the adverse effects of biological extracts
and the fractions. As shown in Table 1, the ED effects are the
most concerned toxicity endpoints in the EDA of biological
samples, including TH-like, estrogenic, (anti)androgenic, and
aryl hydrocarbon receptor (AhR)-mediated activities. In addi-
tion, genotoxicity has also been used as an endpoint for in vitro
bioassays in EDA.63 Comparatively, in vivo bioassays are hardly
used in the EDA of biological samples due to the small sample
size. Donkin et al.64 applied the feeding rate of green mussels
Mytilus edulis as the EDA toxicity endpoint, and found that the
unresolved complex mixture of aromatic hydrocarbons
impaired the feeding behavior of the mussels. Advances in
nontarget analysis research along with ever-improving mass
spectrum techniques have greatly beneted toxicant identi-
cation and conrmation in the EDA of biological samples,
making it a promising approach for diagnosing the toxicants in
biota with unknown identity. However, the conceptual draw-
backs in the EDA of biological samples along with the technical
challenges mentioned above have hampered its development.55

First, the body residues of contaminants in biota are governed
by an in vivo toxicokinetic process, but this is species-
dependent, which prevents the ndings being extrapolated
from one species to others, making the assessment less gener-
alized. Second, a great number of organic contaminants are
metabolizable and only metabolites are accumulated in
This journal is © The Royal Society of Chemistry 2017
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organisms. The toxicity of the metabolites may be totally
different from the parent compounds. A better understanding
of the distribution pattern and biotransformation pathway of
suspect toxicants is critical for toxicity elucidation. These
conceptual drawbacks restrict the EDA of biological samples to
be merely used for specic questions instead of being generally
applicable, although it takes advantage of being able to easily
incorporate bioavailability into EDA practices.

The EDA of abiotic samples

The gradual maturing of bioavailability-based techniques
(bioaccessibility-directed extraction and partitioning-based
passive sampling and passive dosing) in recent years has
provided effective tools to incorporate bioavailability into the
EDA of abiotic samples.6,56 To achieve this, the challenge of
enriching enough extracts for cycled fractionation and bioas-
says needs to be overcome. Most passive-sampling techniques
use small-scale extraction methods, e.g., solid phase micro-
extraction,27,29 so the amount of extracts is too limited to
conduct fractionation and bioassays in EDA, although it is
satisfactory for chemical analysis.

In vitro toxicity testing has been extensively used in EDA
practice due to its high-throughput, highly specic endpoints,
and low sample amount requirement. However, in vitro bioas-
says are not environmentally relevant and are difficult to be
extrapolated to the adverse outcomes at the organism and
population levels. Moreover, in vitro bioassays cannot account
for the in vivo toxicokinetic process of test contaminants, i.e.,
uptake, distribution, biotransformation, and elimination.
Therefore, it is preferable to use more environmentally relevant
in vivo bioassays in cause diagnosis.65 To facilitate the use of in
vivo bioassays in EDA practices, it is necessary to set up
a miniaturized testing system. Moreover, developing
bioavailability-based techniques to gain a relatively large
amount of samples in the extraction step serves as another
solution. So far, the methods to incorporate bioavailability into
the EDA of abiotic samples can be separated into three types,
namely bioaccessibility-directed extraction, and partitioning-
based passive sampling and passive dosing (Table 2).

Bioaccessibility-directed extraction

Bioaccessibility is the fraction of chemical potentially available
to an organism. Although this operational concept is not fully
clear in theory, the bioaccessible fraction (rapid desorption
fraction) estimated by various bioaccessibility-directed extrac-
tion methods has been shown as a promising measure for the
bioaccumulation potential and noted toxicity of contaminants
to the exposed organisms.28,66–68 Compared with partitioning-
based passive sampling (e.g., solid phase microextraction),
which normally exposes the sampling materials to abiotic
samples for a long period to achieve equilibrium,
bioaccessibility-directed extraction (e.g., Tenax extraction) takes
the advantage of merely requiring a single time point treatment
(usually <48 h), making it more applicable for less persistent
contaminants.27 More important, bioaccessibility-directed
This journal is © The Royal Society of Chemistry 2017
extraction makes it easier to obtain a relatively large amount
of extracts compared to partitioning-based extraction, which is
a premise to incorporate bioavailability into EDA. Accordingly,
the rst study to integrate bioavailability into sediment EDA
used a bioaccessibility-directed extraction technique, i.e., large
volume Tenax extraction.69,70 In order to gain enough sediment
extracts for fractionation and bioassays, the regular 24 h single
time point Tenax extraction method was upscaled by a factor of
125.69 Inhibiting the growth of benthic algae Scenedesmus
vacuolatus was selected as the toxicity endpoint. The established
large volume Tenax extraction method was used in the EDA
procedures for three sediment samples taken from the Elbe
River Basin and the results were compared with those obtained
using exhaustive accelerated solvent extraction (ASE). The
patterns of toxicity composition in fractions of the extracts were
different in the bioaccessibility-directed and exhaustive extrac-
tion methods, while exhaustive ASE overestimated the toxicity
contribution from the poorly bioavailable compounds.70

Recently, Hong et al.71 compared the EDA results for coastal
sediment extracts by Tenax and Soxhlet extractions using
a battery of in vitro H4IIE-luc bioassays. The authors found that
the major AhR-active PAHs were C4-phenanthrene and C1- and
C3-chrysene. The levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) equivalent-PAHs in the sediment extracts by Tenax
extraction (60%) better explained the bioassay-derived TCDD-
EQ concentrations than those by Soxhlet extraction (31%),
showing the superiority of using bioaccessibility-directed
extraction in EDA analysis.

Overall, the incorporation of bioaccessibility-directed
extraction into EDA could effectively improve key toxicant
prioritization for more accurately estimating the exposure of
likely toxicants in complex mixtures. Many bioaccessibility-
directed extraction methods have been developed to date and
are suitable for sediment, soil, and dust samples. The selection
of the method should ensure that the desorption of contami-
nants from the environmental medium is the rate-limiting step
and determines the bioaccessible fractions of the contami-
nants, such that the extraction procedure does not signicantly
affect the collected mixture.55 In addition, to guarantee the
applicability of the method, strict quality control procedures
should be included to avoid positive errors caused by impurities
in the extraction materials during biological and chemical
analyses.

Partitioning-based passive sampling

The chemical activity determines the fraction of a chemical
readily available for uptake by an organism and is represented
by the freely dissolved chemical concentrations. Compared with
bioaccessibility-directed extraction, partitioning-based passive
sampling is theoretically more favorable since it directly mimics
the partitioning process of chemicals from an environmental
medium to organisms. In reality, however, partitioning-based
passive sampling is less applied in EDA due to the limitations
related to the small sample masses and long equilibrium time.

Passive-sampling techniques have been extensively used to
assess the risk of contaminated sediments.26,31,32 Li et al.72
Environ. Sci.: Processes Impacts
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demonstrated that passive sampling was better suited with in
vitro bioassays than exhaustive extraction in sediment toxicity
evaluation. A recent study by Vethaak et al.73 showed that in vitro
bioassay testing with passive sampler extracts was a promising
tool to assess sediment toxicity together with a consideration of
bioavailability. While they are rarely used in sediment EDA
nowadays, the successful applications of passive sampler
extracts in toxicity testing provides the possibility to apply this
technique in sediment EDA, but further work is needed before it
can be practically applied.

Alternatively, passive samplers, e.g., POCIS, have been used
to collect organic contaminants from water samples for EDA.
Creusot et al.74 placed POCIS in the upstream and downstream
of a pharmaceutical factory. The extracts of POCIS were evalu-
ated for steroid-like activities using in vitro bioassays and
showed high glucocorticoid, antimineralocorticoid, progesto-
genic, and pregnane X receptor (PXR)-like activities and weak
estrogenic activity. Further EDA tests revealed that dexametha-
sone, spironolactone, and 6-alpha-methylprednisolone were the
main contributors to the corticosteroid activity, while levo-
norgestrel was responsible for the progestogenic activity. To
evaluate the contribution from less polar compounds, other
passive samplers have also been tried. Bergmann et al.75

deployed low-density polyethylene (LDPE) at the Portland
Harbor superfund megasite, Oregon, the U.S., where PAHs have
been traditionally considered as the reason for sh embryo
toxicity. The EDA of LDPE extracts showed that fatty acids and
dithiocarbamates, which were not previously monitored, were
the main contributors to the zebrash embryo toxicity. The use
of passive sampling (LDPE) can help to diagnose the toxicants
in the bioavailable fraction instead of the total extract, thus
improving the accuracy of toxicant identication.

Maintaining the composition of all the contaminants in the
original samples is preferable during transferring the contam-
inants in the environment to the exposure medium for bioas-
says. Since there is no passive sampler suitable for all
compounds with various properties, using a combination of
passive samplers designed for extracting polar and nonpolar
organics (e.g., POCIS and LDPE) is favorable. Creusot et al.76

simultaneously deployed POCIS and a semi-permeable
membrane device (SPMD) in river water, where the sediment
was contaminated by endocrine-disrupting chemicals (EDCs).
Different distribution patterns of ER, (anti-)androgenic
receptor, PXR-like and dioxin-like activities were detected in
extracts of the sediment with POCIS and SPMD, indicating the
presence of varying active chemicals in different compartments.
Similarly, Liscio et al.77 used a combination of four passive
samplers (POCIS-Apharm, POCIS-Bpesticide, LDPE, and sili-
cone strips) to obtain a holistic prole of EDCs in surface water.
The extracts of individual passive samplers were diagnosed by
EDA combining HPLC fractionation with an in vitro bioassay of
the androgen receptor antagonist screen (YAS). Anti-androgenic
contaminants were identied as the main toxicants in the
extracts of POCIS-Apharm and silicone samplers, but the
contaminants had different polarity. A combination of POCIS
and silicone rubber sheets was also been in an EDA test with
impaired photosystem H efficiency in marine microalgae as the
Environ. Sci.: Processes Impacts
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toxicity endpoint.78 In this study, a novel microfractionation
technique using 96-well plates was implemented for the extracts
of passive samplers. Chemical and biological analyses were
conducted on the same plates, and the results showed that
several herbicides were responsible for the noted effect on the
microalgae. Altogether, these studies showed the need to use
multiple passive samplers simultaneously to achieve a holistic
exposure assessment and to consider the toxicity contributions
of various contaminants. This calls for the development of novel
sorption materials for passive samplers to enable them to be
able to extract a broad range of chemicals at the same time.79

A high-selectivity sampler could help to address some
specic questions and improve the accuracy in cause diagnosis
by reducing the complexity of the extracts. In order to nd out
the polyaromatic mutagens in surface water, blue rayon was
used as a passive sampler, which selectively adsorbs poly-
aromatic compounds.80 The Ames uctuation assay was per-
formed using strains TA98, YG1024, and YG1041 with and
without S9 activation. The use of S9 activation in bioassays took
the metabolism-induced change of mutagenicity into consid-
eration. Analytical screening of the mutagenic fractions unrav-
eled amino and nitro-compounds as the potential mutagens.80

Partitioning-based passive dosing

In EDA, bioavailability is not only dealt with in the extraction
step, but also in the dosing step for the fractionalized extracts
for toxicity testing. Organic solvents, such as dimethylsulfoxide
and methanol, are generally used as carriers to dose the extracts
into the bioassay medium in conventional EDA. However,
solvent dosing, which transfers the extracts into the bioassay
medium, may change the composition of contaminants in the
original samples. Recently, partitioning-based passive dosing
has been employed in EDA to take bioavailability into
consideration.6,54–56,81,82

Passive-dosing techniques are based on chemical partition-
ing among phases and have been proposed to maintain
constant concentrations of hydrophobic organic compounds in
water.83 Compared with solvent dosing, passive dosing is
advantageous in compensating for chemical losses caused by
test chamber absorption, volatilization, degradation, and
organismal uptake. Thus it provides more accurate measures of
the solubility, partitioning coefficients, and adverse effects of
hydrophobic organic compounds in water.84,85 Due to its high
biocompatibility, high permeability, and relative small mass
transfer coefficients, PDMS (silicone) is the most commonly
used polymer material in passive dosing.86

A passive-dosing procedure consists of loading and releasing
steps. Two methods have been used to load the fractionalized
sediment extracts onto PDMS polymers. One is the preloading
method, in which the extracts are added into the PDMS
precursor before curing the PDMS polymer,87 while the other
involves postloading the extracts, which can be achieved by
soaking PDMS in a methanol/water solution containing the
extracts and then loading the chemicals onto PDMS through
equilibrium partitioning88 or directly loading all the solution of
the fractionalized extracts onto the PDMS polymer.89 Regardless
Environ. Sci.: Processes Impacts
of the loading methods, the extracts are required to be trans-
ferred to the dosing polymer without preferential losses. Then,
PDMS polymers loaded with the extracts serve as a source to
release chemical mixtures into the testing medium through
partitioning.84 In addition to maintaining constant concentra-
tions of contaminants in the test medium, passive dosing
imitates the partitioning of chemical mixtures in the sediment–
water–organism system, which assists in re-establishing the
composition of chemical mixtures in the bioassay medium the
same as in the original samples.6,56 Therefore, passive dosing is
superior to traditional solvent dosing, which transfers all the
contaminants into the bioassay medium without considering
their bioavailability.

When passive dosing with silicone rods was used in EDA
bioassay, the toxic fractions were distinct from those obtained
with conventional solvent dosing for the same sediment
extracts.82 Accordingly, different key toxicants were identied by
the twomethods. While PAHs were regarded as the main reason
for the toxicity to green algae when solvent dosing was applied,
more polar triclosan was found responsible for the algal toxicity
with the passive-dosing technique in a EDA study.81 This is
reasonable because the toxicity contribution of less bioavailable
lipophilic compounds tend to be overemphasized when using
solvent dosing, which transfers all the chemicals to the bioassay
medium. On the contrary, passive dosing better represents the
exposure of the mixtures in the original sediment samples and
thus provides a more realistic diagnosis. Qi et al.89 applied
passive dosing to transfer the fractionalized extracts into water
to conduct toxicity testing with the midges Chironomus dilutus.
The lack of highly hydrophobic toxicants in this study calls for
more efforts to validate the applicability of the current passive-
dosing techniques in bioassays, especially in the progress of
establishing environmentally realistic EDA methods to account
for suspect toxicants with high hydrophobicity.

In addition to conducting toxicity testing with sediment
extracts using exhaustive extraction, a combination of passive
dosing with bioaccessibility-directed extraction90 or passive-
sampling techniques91 is recommended for sediment EDA.
Brack et al.6 discussed the inuence of dosing techniques for
bioassays on the outcome of the EDA of sediment and water
samples in detail through depicting the partition and dosing
scenarios of chemical mixtures in the sediment, water, PDMS,
bioassay medium, and biota. Bioavailability-based extraction
has been suggested to be combined with passive dosing in EDA
practice, which is, in theory, more environmentally realistic and
reects better the exposure of organisms in the environment.
The selection of passive sampling and passive dosing tech-
niques should be carefully designed for the EDA practices of
different samples in order to avoid altering the chemical
composition of the original mixtures during extraction and
bioassays.

Conclusions and future perspectives

The role of the bioavailability of environmental contaminants
in chemical-based risk assessment has long been noted.
Extensive research in the past decades has provided a better
This journal is © The Royal Society of Chemistry 2017
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understanding of how bioavailability affects the toxicity of
organic contaminants and how to incorporate bioavailability
into effect-based cause diagnosis (e.g., EDA), which is impera-
tive in ecological risk assessment.

The use of biological samples in EDA is the most straight-
forward way to consider the bioavailability of environmental
contaminants. While understudied, this method has been
shown to be a promising way to identify previously unknown
and/or unregulated but bioaccumulative toxicants, particularly
the suspect EDCs in biota. This method, however, suffers from
the restriction of the small sample amount and lack of evidence
for the toxicants that have a tendency to be biotransformed. The
development of effective extraction and cleanup methods for
biological samples and a better understanding of the distribu-
tion pattern and biotransformation pathway of suspect toxi-
cants are critical in generalizing the EDA of biological samples.
For the EDA of abiotic samples, the integration of
bioavailability/bioaccessibility-based extraction and passive
dosing has been considered as a preferable strategy to transfer
chemical mixtures from original environmental samples into
the bioassay medium, providing a way to incorporate bioavail-
ability into EDA tools for more accurately identifying the key
toxicants.

Despite the studies presented in this review, there is still
signicant research potential in this area. To date, EDA
methods with the consideration of bioavailability are too few
andmore studies onmethod development are critical to expand
their practical uses. The applicability of bioavailability-based
extraction and dosing techniques needs to be validated for
their capability to maintain the composition of a contaminant
mixture in raw samples and to mimic uptake by the organisms.
Furthermore, a better understanding of the desorption and
partitioning processes of various contaminants in environ-
mental media and biota would reduce the bias in employing
bioavailability-based extraction and dosing techniques, partic-
ularly for highly hydrophobic and ionic compounds. Lastly,
validation of the proposed methods is critical to expand their
applications for research and regulatory requirements. Future
research is needed to standardize the procedures for incorpo-
rating bioavailability into EDA, which warrants achieving
consistent and comparable results across laboratories.
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