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ARTICLE INFO ABSTRACT

Handling Editor: Frederic Coulon Neonicotinoid insecticides have become one of the most widely used insecticides over the past two decades.
Recent studies have shown considerable risk of neonicotinoids to beneficial insects, however, their health risks to
mammals are still under debate. Limited empirical mammalian toxicity information for neonicotinoids in-
herently presents challenges to environmental health practitioners performing health hazard and risk assess-
ment. Therefore, we first compiled and examined publicly available hazard data for neonicotinoids, and
knowledge gaps on mammals were identified. Probabilistic hazard assessment using chemical toxicity dis-
tributions (CTDs) was subsequently conducted, and initial thresholds of toxicological concern were derived for
rat, dog, mouse, and rabbit under comparative experimental scenarios. Using the rat model, for example, oral 5%
threshold concentrations (TC5s) of 0.11 (0.02, 0.36) and 0.23 (0.001, 3.2) mg/kg bw/day were estimated using
chronic developmental and reproductive no observed adverse effect levels (NOAELs), respectively, while acute
TC5 of 0.71 (0.25, 1.6) mg/kg bw/day was identified using neurological NOAELs. Comparatively, dermal and
inhalational TC5s were estimated as 1583 (1172, 1777) and 451 (294, 615) mg/kg bw/day (equivalent to 486
(322, 622) mg/m3), respectively, using acute median lethal doses. Uncertainty factors (UFs) were also estimated
using both CTD comparisons and individual UF probability distribution approaches to test whether rodent oral
toxicity information or default 10-fold UF approach can provide sufficient protection for mammals. These in-
itially identified UFs were generally smaller than default values (e.g., 10) employed by regulatory stakeholders,
yet larger UFs were occasionally noted. Our findings appear particularly useful for environmental health
practitioners when conducting screening-level risk assessment for neonicotinoids, and provide an example for
health hazard assessment of pesticides with limited toxicity information.
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1. Introduction

Neonicotinoid insecticides have been extensively used for agri-
cultural, veterinary, and residential practices globally since their in-
troduction in the 1990s because of their systemic characteristics and
high efficacy for insect control (Simon-Delso et al., 2015). Recent stu-
dies demonstrate that neonicotinoids are ubiquitous in the environ-
ment, resulting from their ever-growing use, high mobility, and rela-
tively long environmental half-lives in water and soil. Their broad
occurrence has presented urgent risks to biodiversity and integrity of
beneficial organisms and populations (Goulson, 2013; Hladik et al.,
2018). In addition to environmental media, including source waters for
potable uses, neonicotinoids have also been frequently detected in food
products, and hence directly or indirectly increase the probability for
mammalian species or human exposures to neonicotinoids. For
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instance, the U.S. Department of Agriculture (USDA, 2014, 2016) found
neonicotinoids in 12 of 19 fruits and vegetables sampled, with 11 of
them containing multiple neonicotinoids, and the levels of thia-
methoxam exceeded the maximum residue limit in summer squash.
Other evidence of contamination of neonicotinoids and their metabo-
lites was also demonstrated in drinking water (Seccia et al., 2005;
Klarich et al., 2017), vegetables, fruits (Xie et al., 2011), bovine milk
(Seccia et al., 2008), and honey (Mitchell et al., 2017).
Neonicotinoids are considered to be less potent to mammalian
species in comparison with legacy insecticide classes (e.g., organo-
chlorines, organophosphates, and carbamates) (Tomizawa and Casida,
2005; Jeschke et al., 2013); however, studies showed that exposure to
neonicotinoids pose potential risks to mammalian species or humans
(Han et al., 2018; Zhang et al., 2018). Neonicotinoids can adversely
affect mammalian nicotinic acetylcholine receptors, leading to
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neurobehavioral deficits and increased expression of glial fibrillary
acidic protein in the motor cortex and hippocampus (Abou-Donia et al.,
2008; Li et al., 2011; Kimura-Kuroda et al., 2012). These receptors are
important for nervous system functions, including memory, cognition
and behavior development (Kimura-Kuroda et al., 2012; Chen et al.,
2014). Detrimental effects of neonicotinoids to mammalian species in-
cluded developmental (e.g., decreased body weight and reduced food
consumption and water intake), reproductive (e.g., decreased sperm
production and function (motility), and delayed sexual maturation),
and neurological responses (e.g., decreased motor and locomotor ac-
tivities), and skin and eye irritation, and even tumor (thiacloprid) (US
EPA, 2002, 2003a, b, 2004).

Recognizing potential risks of neonicotinoids to mammals or hu-
mans, a number of regulatory human limit values (HLVs), such as ac-
ceptable daily intakes (ADIs), acute/chronic reference dose (ARfD/
CRfD), and acceptable operator exposure level (AOEL; systemic) have
been established for neonicotinoid around the world (Table 1). Due to
paucity of human epidemiological data, most of current HLVs for
neonicotinoids were derived from the existing mammalian toxicity in-
formation (Table S1) and adjusted by appropriate uncertainty factors
(UFs) for conservatism. Mammal chronic no observed adverse effect
level (NOAEL) or lowest observed adverse effect level (LOAEL) values
commonly served as point of departure (PoD), and a default 100-fold
UF approach was used accounting for inter- (10-fold) and intra-species
(10-fold) variances when establishing HLVs (US EPA, 2002; EFSA,
2013; Commonwealth of Australia, 2017). Additional composition UF
accounting for extrapolations of LOAEL-to-NOAEL (UF_y) or sub-
chronic-to-chronic (UFs.c), adequacy of database, or modifying factor
was also adopted upon less than ideal data for a chemical (US EPA,
2003a, 2005; Health Canada, 2010). Take acetamiprid as an example,
ARfD and CRfD of 0.1 and 0.07 mg/kg bw/day were recommended by
the U. S. Environmental Protection Agency (US EPA, 2002) based on
rodent acute neurotoxicity (male LOAEL: 30 mg/kg/day) and chronic/
oncogenicity studies (male and female LOAEL: 17.5 mg/kg/day), re-
spectively. More stringently, the European Union (EFSA, 2013; EC,
2017) refined HLVs (ADI, ARfD, AOEL, and acute AOEL (AAOEL)) for
acetamiprid to a value of 0.025mg/kg bw/day when they applied a
smaller NOAEL of 2.5 mg/kg bw/day (developmental neurotoxicity) as
a PoD. Health Canada (2010) dropped the ADI and ARfD for acet-
amiprid to 0.008 mg/kg bw/day by dividing the NOAEL of 2.5mg/
kg bw/day by a composite UF of 300 (additional 3-fold was refined as
Pest Control Products Act factor).

Though commonly used in regulatory settings, whether default UF
approach (e.g., 100-fold) can provide sufficient (or over- or under-)
protection for humans when mammalian toxicity data of neonicotinoids
are used as surrogates remains understudied. Whether rodent oral
toxicity information can provide adequate protection for other mammal
species under comparative experimental scenarios has not been ro-
bustly evaluated. A critical review is also warranted to examine all
publicly available hazard data for mammalian species under com-
parative exposure scenarios, and to identify data gaps for future toxicity
testing. Therefore, three primary objectives were targeted in the current
study. First, we collated and examined publicly available acute median
lethal dose (LD50) and developmental, reproductive and neurological
NOAEL and LOAEL values of neonicotinoids under comparative ex-
perimental scenarios for different model species from previous sources
for knowledge gaps identifications. Probabilistic hazard assessment
(PHA) using chemical toxicity distribution (CTD) were subsequently
conducted for particular endpoints (e.g., rat oral developmental chronic
NOAEL), and threshold concentrations and corresponding 95% con-
fidence intervals (95% ClIs) were derived for identifying initial thresh-
olds of toxicological concern (TTCs), based on existing information.
Finally, both CTD comparisons and individual UF probability distribu-
tion approaches were used to identify UFs for neonicotinoids, including
1) extrapolations of LD50-to-NOAEL (e.g., acute-to-chronic ratios
(ACRs)), exposure durations (e.g., subchronic-to-chronic), and LOAEL-
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to-NOAEL within a model species, 2) species-to-species extrapolation
(e.g., rat-to-mouse/rabbit), and 3) route-to-route extrapolation (e.g.,
oral-to-dermal/inhalation).

2. Methods
2.1. Data mining

In this review, ten currently used neonicotinoids were considered
(see Table S2 for their physicochemical properties), and hazard data of
nine neonicotinoids (except for paichongding) for common mammalian
toxicology model species (rat, dog, mouse, and rabbit) under oral,
dermal, and inhalation exposures were collected from publicly avail-
able databases and peer-reviewed publications. The databases include
US EPA Office of Pesticide Programs (US EPA OPP), Pesticide Properties
Database (PPDB), Toxicology Data Network (TOXNET), and California
EPA Department of Pesticide Regulation (California EPA DPR). Toxicity
endpoints included LD50s for lethality, and acute/subacute/sub-
chronic/chronic NOAELs and LOAELs for developmental, reproductive,
and neurological responses.

2.2. Chemical toxicity distributions (CTDs)

Probabilistic hazard assessments (PHA) using CTDs approach were
conducted for each neonicotinoid using datasets we reviewed and
compiled. Briefly, any outlier(s) detected by Grubbs' (Grubbs, 1969) or
Tietjen-Moore (Tietjen and Moore, 1972) tests were excluded for each
dataset. A geometric mean was used when there were multiple data for
a chemical under a particular exposure scenario for a species. Only
datasets contained a minimum of five data points (i.e., at least five
neonicotinoids) were used for CTDs constructions. Normality of re-
siduals for each dataset (log-transformed) was checked by the Shapiro-
Francia test (Shapiro and Francia, 1972), and goodness of fit at the
lower tail of each distribution was assessed by Anderson-Darling test
(Anderson and Darling, 1954). Hazard data were then ranked in as-
cending order, and percentiles were assigned from the Weibull formula
(Eq. (1)).

Percentile = i/(n + 1) X 100% (@)

where i is the rank of the datum in ascending order and n is the total
number of data points. The CTDs were constructed and fitted by the log-
normal regression model (SigmaPlot, version 13.0, San Jose, CA, USA).
Threshold concentration (TC) values and corresponding 95% Cls at
1%, 5% 10%, 50™, 90™, 95% and 99 percentiles for each CTD were
determined from the log-normal model by incorporating Monte Carlo
simulation approach (resampled 5000 times) in the Statistical Analysis
System package (SAS, version 9.4, Cary, NC, USA). For unit consistency
(mg/kg bw/day), rat inhalation acute LD50 data expressed in mg/L
were first transformed to mg/m?>, and subsequently converted to mg/kg
bw/day based on an allometric approach (Bide et al., 2000) (see Ap-
pendix A for data-transformation methodology). Rat inhalation acute
LD50 CTDs using data with units of mg/m® and mg/kg bw/day, re-
spectively, were constructed for TCs and 95% Cls estimates.

2.3. Uncertainty factors (UFs)

In the present study, both CTD comparisons and individual UF
probability distributions approaches were used to identify UFs for
neonicotinoids within a model species (e.g., ACRs, UFs ¢, and UFy y),
species-to-species, and route-to-route extrapolations under a particular
experimental scenario following our previously reported methods
(Wang et al., 2018). In brief, the UFs were first derived from pairwise
TC ratios and 95% CIs from corresponding pairwise CTDs using all
available data (in SAS as mentioned above). Concurrent meta-analyses
were conducted using two corresponding datasets containing common
(similar) chemicals to rectify potential influences caused by different
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chemical compositions for both CTDs. The slope and/or intercept
parameters of the pairwise log-normal fitted CTDs were also compared
by one-way analysis of covariance (ANCOVA; SPSS, version 23, Chi-
cago, IL, USA). To further compare differences between the two dis-
tributions quantitatively, TC5 ratio (95% CI) was applied for each
comparison; if the 95% CI overlapped with unity, then the ratio was
equal to 1 (i.e., both CTDs shared similar sensitivity) (Sokal and Rohlf,
1995). Second, UFs were calculated separately for all chemicals from
the pairwise datasets containing common chemicals, and corresponding
hazard data available to a similar species for a given endpoint. All
calculated UFs were then ranked and assigned percentiles following the
Weibull formula (Eq. 1) to construct a probability distribution, which
was then fitted by the log-normal regression model. Afterwards, overall
UFs and 95% Cls covering 90%, 95%, and 99% of concerned chemicals
were determined for each distribution with an inverse prediction
method. Whether a factor of 10 or 100 would be protective for various
distributions of neonicotinoids was examined.

3. Results and discussion
3.1. Data availability and knowledge gaps

Availability of data varied significantly across the neonicotinoids of
concern (Table S3). Hazard data for acetamiprid, clothianidin, dinote-
furan, imidacloprid, thiacloprid, and thiamethoxam had high re-
presentativeness of various concerned toxicity endpoints, which ac-
counted for > 50% of time for the endpoints of concern. They also
dominated 20 generated CTDs (datasets with =5 neonicotinoids) with
80%-95% of frequency. On the contrary, a few acute data were avail-
able for imidaclothiz (two acute LD50s), nitenpyram (five acute LD50s),
and nithiazine (three acute LD50s, one rat oral developmental acute
NOAEL, and one rat oral neurological acute NOAEL), and no hazard
data were found for paichongding. In addition, hazard data for rats
under oral exposure dominated the datasets among species and ex-
posure routes of concern, respectively. This represented an important
observation because oral exposure through pesticide residues in food
represents an important exposure route for humans. The application of
CTDs (as demonstrated below) was also largely dependent on the
quantity of data. In this study, and consistent with previous practices
(Dobbins et al., 2008, 2009; Berninger and Brooks, 2010; Williams
et al., 2011; Berninger et al., 2011; Dreier et al., 2015; Wang et al.,
2018), a dataset containing a minimum of five data points was con-
sidered to be suitable for CTD development, particularly considering
data availability for neonicotinoids. Scarce and even no toxicity data for
imidaclothiz, nitenpyram, nithiazine, and paichongding calls for addi-
tional data generation (toxicity testing) or read across from other
neonicotinoids to fill data gaps during future hazard and risk assess-
ments.

3.2. Chemical toxicity distributions (CTDs) and thresholds of toxicological
concern (TTCs)

Among all datasets used to construct CTDs, no outlier(s) were de-
tected by Grubbs' and Tietjer-Moore tests, thus all available data were
used in our meta-analyses (Table S4). Acute, developmental, re-
productive, and neurological CTDs were subsequently generated for rat
(oral, dermal, and inhalation; Fig. 1; see Fig. S1 for rat inhalation acute
LD50 CTD using data expressed in mg/m®), dog, mouse, and rabbit
(oral only; Fig. 2). All datasets passed the Shapiro-Francia (normality of
residuals; p > 0.05) and Anderson-Darling tests (p > 0.05; Table S5).
Derived TCs and 95% CIs at 1%, 5%, 10, 50™, 90, 95", and 99"
percentiles were listed in Table 2.

Using TC5s as examples, neonicotinoids tended to be acutely lethal
to rats at or below 56 (95% CI: 22, 99), 1583 (1172, 1777), and 451
(294, 615) mg/kg bw/day for 5% of chemicals under oral, dermal, and
inhalation exposures, respectively. Comparatively, there were 5%
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probability of neonicotinoids to elicit chronic developmental and re-
productive responses (LOAELSs) to rat (oral) at or below 1.7 (0.76, 3.2)
and 4.2 (0.01, 20) mg/kg bw/day, respectively, and corresponding
TC5s using NOAELs were estimated at 0.11 (0.02, 0.36) and 0.23
(0.001, 3.2) mg/kg bw/day. Although rodent neurological hazard data
are limited, acute TC5s can still be estimated at 2.7 (0.94, 5.6) and 0.71
(0.25, 1.6) mg/kg bw/day using LOAELs and NOAELs, respectively.

Since dermal and inhalation data were scarce for other species, only
oral CTDs were generated for dog (developmental subchronic and
chronic NOAELs), mouse (acute LD50s, developmental subchronic and
chronic NOAELs/LOAELs), and rabbit (developmental subacute
NOAELs/LOAELs; Fig. 2). Accordingly, when considering develop-
mental responses, chronic TC5s were estimated at 2.4 (1.4, 3.2) for dog
(using NOAELs only) and 0.75 (0.01, 3.3) and 0.66 (0.24, 1.2) mg/kg
bw/day for mouse (using LOAELs and NOAELs), respectively, and
subacute TC5s of 17 (9.4, 24) and 5.9 (0.20, 14) mg/kg bw/day were
estimated for rabbit using LOAELs and NOAELSs, respectively (Table 2).

The use of CTD in PHA can support screening level risk assessment
for risk practitioners or assessors with a criterion threshold value to
protect a given level (e.g., 5%) of effects for chemicals within a parti-
cular chemical class (e.g., neonicotinoids) (Wang et al., 2018). These
derived TC values (e.g., TC5) and 95% CIs may serve directly as initial
TTCs or adjusted by a factor (e.g., 10-fold) for a species exposed to
neonicotinoids under a given exposure scenario (e.g., rat oral devel-
opmental/reproductive chronic NOAEL). The TCs (or TC ratios) and
their 95% CIs derived from the pairwise CTDs can also be used to
compare relative sensitivity between or among different distributions
(Solomona et al., 2000; Wang et al., 2018). For example, TC5 ratios and
95% Cls (as demonstrated below) were used in this study to compare
relative sensitivities between model species (rat to dog, mouse, or
rabbit) or between exposure routes of interest (oral to dermal or in-
halation). In addition, the exceedance profile that describes the prob-
ability of a class of chemicals such as neonicotinoids exceeding the
concentration associated with a particular degree of effect can be esti-
mated practically from the derived log-normal regression functions
(e.g., ¥y = ax + b; Table 2).

The TTC concept is an alternative approach in health risk assess-
ment that can be used in the absence of chemical-specific toxicity data.
This approach is based on establishing the levels of mammal/human
doses for a chemical (a TTC) that would not present a safety concern
using toxicity data from other chemicals sharing similar structures
(Kroes et al., 2005; Munro et al., 2008; EFSA, 2016). After its initial
application by US FD&C Act (1958) with a TTC-like approach for che-
micals in food additives in the U.S., it has been adopted to evaluate
chemical classes, such as food additives and food contact articles by US
FDA (1995) and ILSI Europe (Kroes et al., 2004; Barlow, 2005), fla-
voring substances by EFSA (EC, 2000; EFSA, 2010) and JECFA (1995),
industrial chemicals by ECETOC (2004), and genotoxic impurity by
EMA (2006). The TTC and other TTC-like approaches (e.g., dermal
sensitization threshold (DST) for dermal and concentration of no tox-
icological concern (CoNTC) for inhalation) were also applied for as-
sessing chemicals introducing dermal and inhalation toxicity, such as
skin sensitizing substances (Api et al., 2008; Keller et al., 2009; Safford
et al., 2011) and air pollutants (Drew and Frangos, 2007; Escher et al.,
2010).

Our study also incorporated the TTC concept in hazard assessment
of neonicotinoids to multiple mammalian species and exposure routes,
and a number of TCs and 95% Cls for mammalian species under com-
parative exposure scenarios against neonicotinoids were derived (oral,
dermal, and inhalation; Table 2). Those TC values (e.g., TC1 or TC5) or
their lower-bound of 95% CIs may be useful as initial TTCs for neoni-
cotinoids during regulatory applications. For example, if TC1 of
0.11 mg/kg bw/day derived from developmental chronic NOAEL CTD
was borrowed as an overall PoD and adopted by a 100-fold UF (ac-
counting inter- and intra-species variances), an interim HLV of
0.001 mg/kg bw/day was derived. Until more robust toxicology
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information becomes available, this interim HLV could be adequately
protective for the six commonly used neonicotinoids (acetamiprid,
clothianidin, dinotefuran, imidacloprid, thiacloprid and thiamethoxam;
Table 1) around the globe.

3.3. Uncertainty factors (UFs)

Most pairwise log-normal CTDs using all (Figs. S2 and S3) and
common (Figs. S4 and S5) neonicotinoids visually diverged, indicating
different sensitivity. This observation was further supported by sig-
nificantly different slope and/or intercept parameters (Tables S6 and
S7). Using the CTD comparisons approach, 18 UFs were identified for a
single species (12, 4, 1 and, 1 for rat, mouse, dog, and rabbit, respec-
tively) including LD50-to-NOAEL, exposure durations, and LOAEL-to-
NOAEL extrapolations using all hazard data (Tables 3 and S8). Con-
currently, additional UFs were identified using CTD comparisons for
both datasets having similar neonicotinoids (except rat neurological
acute LOAEL-to-NOAEL and mouse acute LD50-to-developmental
chronic NOAEL TC ratios (n < 5) and five UFs for pairwise datasets
having similar neonicotinoids; Tables 4 and S9). Corresponding TC
values for the pairwise CTDs contained similar neonicotinoids were
estimated (Table S10). Probability distributions were also constructed
using all calculated UFs for individual neonicotinoids from the pairwise
datasets (Figs. 3 and 4), and overall UFs covering 90%, 95%, and 99%
of neonicotinoid chemicals of concern were estimated (Table 5).
Meanwhile, probability of encountering each UF for neonicotinoids
above or below common factors of 10 or 100 were determined
(Table 5).

The UFs are not always applied to chronic NOAELs for toxicity
endpoints of concern; rather, UFs represent alternative choices when
ideal hazard information is not available. It is also crucial to evaluate
uncertainties during hazard and risk assessment, as it directly impacts
risk management measures (US EPA, 1995). Despite LD50s not com-
monly being used in mammalian hazard assessment, the values are
sometimes used as a starting point and then adjusted by a larger ACR in
an emergency situation or in a screen-level risk assessment, particularly
when there are no other types of data available (e.g., State of Michigan)
(State of Michigan, 2017). However, the suitability of applying such
default ACRs needs to be examined for various chemical classes. As
shown in Table S3, there were acute LD50s available for imidaclothiz
and nitenpyram, yet developmental or reproductive toxicity informa-
tion for these insecticides are lacking. If rodent acute LD50s are used as
surrogates and divided by a factor of 10 (or 100), the derived chronic
developmental or reproductive toxicity profiles (NOAELs) would only
provide 16% (or 66%) or 25% (or 76%) of protection (Table 5). Instead,
during the present study ACRs of 112 (32, 464) (TC5 ratio)-411 (280,
623) (90" centile) and 58 (5.8, 858)-246 (141, 547) were estimated for
neonicotinoids for rat (oral) from TC5 ratios between acute LD50s and
developmental and reproductive chronic NOAELSs, respectively (Tables
3-5). In addition, an ACR for mouse (oral) was estimated to be 92 (30,
295) using CTD comparisons approach. Subsequently, such mechan-
istically derived ACR values may be applied with higher confidence
than the arbitrary default values of 10 or 100.

When only subchronic/subacute data are available for an endpoint,
an extra exposure duration extrapolation factor (e.g., UFs.c) is normally
applied to extrapolate chronic exposure. Within a similar develop-
mental response, UF extrapolations for exposure duration were com-
puted for neonicotinoids, and three 95% CIs of four TC5 ratios over-
lapped with the unity (except for rodent oral developmental subacute-
to-chronic UF of 6.2 (2.0, 24) and 3.0 (1.4, 9.0) using all and common
neonicotinoids, respectively; Tables 3 and 4), indicating similar sensi-
tivity for particular endpoints of a species across exposure durations.
Interestingly, UFs ¢ values were species-dependent and were 4.4 (2.7,
10), 22 (14, 41), and 114 (40, 590) for rat, dog, and mouse, respec-
tively, when considering developmental toxicity data from individual
UF probability distribution. It appears UFs ¢ could be reduced from 10

22

Environment International 125 (2019) 9-24

to 3.8-4.4 for rats (oral), again based on existing information, since a
factor of 10 would provide adequate protection with high confidence
(97%; Table 5) when rodent developmental subchronic NOAELs were
used as surrogates for chronic NOAELs. Similarly, it may be reasonable
to reduce UFs for subacute-to-subchronic and subacute-to-chronic ex-
trapolations from 10 to 1.0-6.9 and 3.0-6.2, respectively, for rats (oral)
when considering developmental responses. This observation was si-
milar with previous studies (Rulis and Hattan, 1985; Lewis, 1993;
Dourson et al., 1996) that 10-fold UFs ¢ provided sufficient (or over)
protection and could be reduced on a scientific basis (warranted smaller
UFs ¢). Conversely, the UFs ¢ might be increased from 10 to 22 and 114
for dog and mouse, respective, for extrapolating more conservative
chronic NOAELs due to low confidence of protection using a 10-fold UF
(82% for dog and 69% for mouse; Table 5).

The UF_y is another UF applied to LOAELs to estimate NOAEL
values. Numerous studies suggested reducing this factor from 10 to
lower values (e.g., 2-3 by ECETOC (1995)) for particular chemical
classes in practice (Naumann and Weideman, 1995; Dourson et al.,
1996; Wang et al., 2018). Based on existing information for neonico-
tinoids (Tables 3-5), it appears reasonable (with high confidence) to
reduce UF N from 10 to 3.4-5.3, 4.3-5.1 and 3.7 when considering
developmental (chronic), reproductive (chronic), and neurological
(acute) LOAELSs, respectively, as surrogates for corresponding NOAEL
for rats, and 2.8-5.4 for rabbits when using developmental subacute
LOAELs for NOAELs. However, it is exceptionally important to note that
a larger UF;  of 247 was identified to be more appropriate for mouse
(oral) when considering developmental chronic responses.

In the case that relevant data are deficient for a species or an ex-
posure route of interest, health risks resulting from dermal or inhalation
exposures are frequently assessed based on rodent oral toxicity data
(Freireich et al., 1966; Geraets et al., 2014). For neonicotinoids, dif-
ferences in data deficiency were remarkable. While dermal and in-
halation data were limited, rodent oral hazard data dominated the
datasets (Tables S3 and S4). In the case of species-to-species extra-
polations, six UFs were derived from rat to dog, mouse, and rabbit
considering all available oral acute LD50s, and developmental sub-
acute, subchronic, and chronic NOAELs (Tables 3 and S8; five UFs when
considering common neonicotinoids for both datasets; Tables 4 and S9).
Surprisingly, calculated UFs for species-to-species extrapolation on the
basis of TC5 ratios were all equal to 1, implying there were no sig-
nificant differences in sensitivity between rat and mouse (develop-
mental subchronic/chronic), rat and dog (developmental subchronic/
chronic), neither rat and rabbit (acute). For purposes of conservatism,
UFs of 2.3 and 25 were identified for rat-to-dog extrapolations when
considering development subchronic and chronic responses, respec-
tively. Similarly, UFs of 15, 3.2, and 59 could be useful for rat-to-mouse
extrapolations when considering acute (lethal) and developmental
subchronic and chronic effects, respectively.

Because there were only sufficient rodent data (acute LD50s) of
neonicotinoids for constructing dermal and inhalation CTDs, oral-to-
dermal and oral-to-inhalation UFs were identified for rats (Tables 3-5).
Interestingly, it appears that rodent oral LD50s were often smaller than
dermal and inhalation LD50s (left shifted oral CTDs to corresponding
dermal/inhalation CTDs; Figs. S3g and h and S5g and h), indicating that
rats were more sensitive to neonicotinoids under oral exposure than
dermal or inhalation exposures, which avoid first pass metabolism. This
observation was characterized by the smaller than 1 TC5 ratios (Tables
3 and 4) and individual UFs (87.5% for oral-to-dermal and 100% for
oral-to-inhalation; Fig. 4). Thus, based on the analysis presented here,
rodent oral hazard data appears to provide sufficient protection if they
are used for inhalation extrapolation, with a factor of 2.7 could be re-
commended for rodent oral-to-dermal extrapolation (Table 5). Further
studies should be conducted when additional dermal or inhalation
chronic responses (especially for rabbit) are available to compare the
corresponding rodent oral CTDs for a particular response. Further meta-
analysis should also be conducted when more hazard data are available,
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especially for imidaclothiz, nitenpyram, nithiazine, and paichongding,
so as to validate and/or refine our current findings.

4. Conclusions

In the present meta-analysis paper, we reviewed and examined
public available hazard data for mammal species (rat, dog, mouse, and
rabbit) under oral/dermal/inhalation exposures against neonicotinoids.
The PHA approach using CTDs for neonicotinoids was subsequently
conducted and corresponding TC and 95% CI values were estimated for
a particular dataset under a defined exposure scenario for various
common mammalian species. These threshold concentrations from a
more robust dataset on a data-driven basis can benefit read across when
filling data gaps or conducting screening-level risk assessment for
neonicotinoids in the future.

In practice, these derived TCs (or adjusted by a factor) represent
initial TTC values for future hazard and risk assessment, or could be
useful as surrogates for interim HLVs establishment. These thresholds of
neonicotinoids and probability values (likelihood of adverse health ef-
fects) are also becoming increasingly important in upper-tier risk as-
sessment. Using available hazard data, uncertainty factors were also
identified for neonicotinoids including LD50-to-NOAEL, LOAEL-to-
NOAEL, and exposure duration extrapolations within a species, in ad-
dition to species-to-species (oral: rat-to-dog/mouse/rabbit) and route-
to-route (rats: oral-to-dermal/inhalation) extrapolations. These identi-
fied UFs, which can be refined with more data availability, appear
beneficial for risk practitioners during data dossier development (read
across) or conducting screening-level risk assessment especially for
neonicotinoids with little or no toxicity information. Risk assessors or
managers can also characterize potential hazard of neonicotinoids using
these data-driven UFs, which reflect degrees of uncertainty in various
cases and inform influences of uncertainty during risk management
decisions with additional scientific judgment.
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